Blue Green Dream applied research: Costing the benefits of Blue Green Solutions

Ana Mijic

Imperial College London Department of Civil and Environmental Engineering

Achieving the **Blue Green** Dream London 11 November 2015

Objectives

To deliver a step-change in **cost-benefit** analysis of **SuDS retrofitting** by providing:

- Flood risk mitigation solutions for the **Decoy Brook** catchment
- New evidence for regulatory frameworks regarding factors that determine costeffectiveness of Blue Green Solutions
- Example of a partnership model for funding the proposed set of solutions

Team

Imperial College London:

- Juan Ossa Moreno
- Dr Karl Smith
- Prof Cedo Maksimovic
- Dr Ana Mijic (PI)

Environment Agency:

- Marius Greaves
- Chris Thilthorpe

AECOM:

Mike Henderson
London Borough of Barnet:

- Chris Chrysostomou Deltares:
 - Prof Frans van de Ven
 - Dr Reinder Brolsma

Imperial College London

Methodology

SUDS mapping for Decoy Brook Catchment

Stakeholders participatory workshop Adaptation Support Tool [Deltares]

Cost-benefit analysis

Multi-Colored Manual

Benefits SuDS Tool [CIRIA]

Example of a funding model

Decoy Brook catchment: Infrastructure at flooding risk

Finchley Road Police Station A502 and A406 intersection

Golders Green Station and Northern line railway

> One school 13 Electricity installations

Participatory workshop

- Mapping of potential intervention measures
- Transferring ideas into the AST using the maptable

AST Sub-catchment scale solution: Police station

Cost-Benefit Analysis: MCM vs. BeST

The main difference between BeST and the MCM is that the latter is a tool to appraise benefits associated to **flooding only**, while the former takes into account **wider benefits**

http://www.susdrain.org/resources/best.htm

MCM results

	Cost	MCM Flood Benefits	NPV* Flood Benefits	BCR** Flood Benefits
SUDS 1	£521,837	£158,758	-£363,079	0.32
SUDS 2	£460,110	£290,241	-£169,869	0.66
SUDS 3	£519,318	£319,589	-£199,729	0.64
SUDS 4	£981,947	£448,999	-£532,948	0.47
SUDS 5	£979,428	£609,830	-£369,598	0.65

*NPV = Net Present Value

**BCR = Benefit Cost Ratio Benefits

BeST results

	Cost	BeST Wider Benefits	NPV* Wider Benefits	BCR** Wider Benefits	BeST % of total BCR
SUDS 1	£521,837	£459,100	-£62,737	0.91	65
SUDS 2	£460,110	£470,495	£10,385	1.06	38
SUDS 3	£519,318	£910,278	£390,960	1.82	65
SUDS 4	£981,947	£919,206	-£62,741	0.97	52
SUDS 5	£979,428	£1,380,773	£401,345	1.46	55

*NPV = Net Present Value

**BCR = Benefit Cost Ratio Benefits

Breakdown of benefits for Police Station

Conclusions

- Assessment of wider benefits using BeST CIRIA tool improved the feasibility of SuDS
- Ponds and rainwater tanks were the most cost-efficient SuDS
- Operation & Maintenance costs can represent almost 50% of the Whole Life Cost for some SuDS
- Need for new SuDS funding models:
 - Targeted direct incentives from public institutions to reduce private CAPEX
 - Indirect incentives from water utilities to ensure payback
 - A guidance to manage SuDS performance
 - A leading position of public institutions to coordinate stakeholders' participation

Counters Creek SuDS retrofit:

CDT in Sustainable Civil Engineering 50:50+ scheme PhD project with Thames Water on full scale performance assessment of SuDS SuDS and rainwater harvesting: InnoH2O H2020 Innovation proposal led by the University of Exeter

Blue Green Dream current and future applied research

Green Roof Optioneering for Water- and Thermoperformance (GROWTh):

NERC GI Innovation proposal with Zinco and London Borough of Hackney on green roof assessment tool BG Solutions and urban groundwater: Groundwater Infiltration into Urban Infrastructure Centre for Research and Innovation with Atkins, BGS and University of Birmingham;

> NERC DTP PhD project proposal with Kent County Council, EA, Southern Water and Thanet District Council

Ana Mijic

ana.mijic@imperial.ac.uk @leiastarspear

Achieving the Blue Green Dream #BGDachieving

